Answer:
Option A
Explanation:
By force balancing perpendicular to the inclined plane
N=$mg \cos \theta$
By forces balancing parallel to inclined plane,
$mg \sin \theta-f_{r}=m\frac{dv}{dt}$
$\Rightarrow \frac{dv}{dt}=\frac{mg \sin \theta-f_{r}}{m}\Rightarrow v(t)=\int g \sin \theta dt-\frac{1}{m}\int f_{r}.dt $
Now, torque, $\tau= I \frac{d\omega}{dt}= r \times F_{r} $ and $ I=mk^{2}$
$\therefore$ $mk^{2}\frac{d \omega}{dt}=rF_{r}$ or $ \frac{d\omega}{dt}= \frac{rF_{r}}{mk^{2}}$
$\Rightarrow$ $\omega(t)=\frac{R}{mk^{2}}\int f_{r}dt$
or $\frac{1}{m}\int f_{r} dt= \frac{k^{2}}{R}\omega(t)=\frac{k^{2}}{R^{2}}v(t)$ (using $\omega$=v/R)
$\Rightarrow$ $v(t)=\int g \sin \theta dt- \frac{k^{2}}{R^{2}}v(t)$
or $v(t)=\frac{1}{\left(1+\frac{k^{2}}{R^{2}}\right)}\int g\sin \theta dt$
So, acceleration,
$a(t)=\frac{dv(t)}{dt}=\frac{g \sin \theta}{\left(1+\frac{k^{2}}{R^{2}}\right)}$